$\gamma = 77.247 \ (5)^{\circ}$

Z = 1

V = 780.58 (8) Å³

Mo $K\alpha$ radiation

 $0.47 \times 0.41 \times 0.35 \text{ mm}$

Diffraction, 2009)

9822 measured reflections

5136 independent reflections

4216 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $T_{\min} = 0.932, \ T_{\max} = 1.000$

 $\mu = 0.67 \text{ mm}^{-1}$

T = 110 K

 $R_{\rm int} = 0.025$

refinement

 $\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\min} = -0.27 \text{ e} \text{ Å}^{-3}$

Acta Crystallographica Section E Structure Reports Online

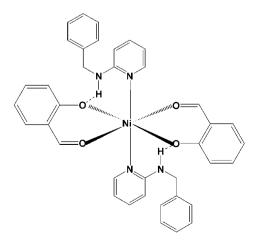
ISSN 1600-5368

Bis[2-(benzylamino)pyridine- κN^1]bis(2formylphenolato- $\kappa^2 O, O'$)nickel(II)

Kouassi Ayikoé, Ray J. Butcher* and Yilma Gultneh

Department of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA

Correspondence e-mail: rbutcher99@yahoo.com


Received 8 December 2010; accepted 10 January 2011

Key indicators: single-crystal X-ray study; T = 110 K; mean σ (C–C) = 0.002 Å; R factor = 0.034; wR factor = 0.086; data-to-parameter ratio = 23.6.

In the title complex, $[Ni(C_7H_5O_2)_2(C_{12}H_{12}N_2)_2]$, the Ni^{II} atom lies on a center of inversion and is coordinated in an octahedral geometry by two 2-(benzylamino)pyridine (2-BAP) and two 2-formylphenolate ligands with the O-atom donors in the equatorial plane and the pyridine N atoms in axial positions. There are hydrogen-bonding interactions between the secondary amine H atom and the phenolate O atom, as well as $C-H \cdots O$ interactions, which result in the dihedral angle between the aromatic phenyl ring of the 2formylphenolate moiety and the pyridine ring being 80.23 (4)°. In the packing, there are both $C-H \cdots \pi$ interactions, which link the molecules into chains along the b axis, and offset $\pi - \pi$ interactions involving both the pyridine and phenyl rings of the 2-BAP ligands [centroid-centroid distances = 4.0100(8) Å for the pyridine rings and 3.6601(8) and 4.8561 (8) Å for the phenyl rings].

Related literature

For the structures of similar octahedral nickel complexes, see: Assey *et al.* (2010*a,b*); Butcher *et al.* (2009); Gultneh *et al.* (2008). For bond-length data, Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{bmatrix} Ni(C_7H_5O_2)_2(C_{12}H_{12}N_2)_2 \end{bmatrix}$ $M_r = 669.40$ Triclinic, $P\overline{1}$ a = 8.1747 (5) Å b = 9.3365 (5) Å c = 10.9183 (6) Å $\alpha = 73.926$ (5)° $\beta = 84.766$ (5)°

Data collection

Oxford Diffraction Xcalibur
diffractometer with a Ruby
detector
Absorption correction: multi-scan
(CrysAlis PRO; Oxford

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.086$ S = 1.055136 reflections 218 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C1A-C6A ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2B-H2BN\cdotsO1A$	0.775 (17)	2.147 (18)	2.8550 (14)	152.0 (17)
$C1B - H1BA \cdots O1A^{i}$	0.95	2.42	2.9216 (14)	113
$C3B-H3BA\cdots Cg4^{ii}$	0.95	2.44	3.3674 (14)	166
$C11B - H11A \cdots Cg4^{iii}$	0.95	2.91	3.7535 (17)	148

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1; (iii) x, y - 1, z + 1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

RJB wishes to acknowledge the NSF-MRI program (grant No. CHE-0619278) for funds to purchase the diffractometer. KA thanks the National Science Foundations' AGEP Fellowship for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2338).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Assey, G. E., Butcher, R. J. & Gultneh, Y. (2010a). Acta Cryst. E66, m620.
 Assey, G., Gultneh, Y. & Butcher, R. J. (2010b). Acta Cryst. E66, m654–m655.
 Butcher, R. J., Gultneh, Y. & Ayikoé, K. (2009). Acta Cryst. E65, m1193–m1194.

Gultneh, Y., Khan, A. R., Ahvazi, B. & Butcher, R. J. (2008). Polyhedron, 17, 3351–3360.

Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Acta Cryst. (2011). E67, m207-m208 [doi:10.1107/81600536811001425]

Bis[2-(benzylamino)pyridine- κN^1]bis(2-formylphenolato- $\kappa^2 O, O'$)nickel(II)

K. Ayikoé, R. J. Butcher and Y. Gultneh

Comment

As part of our continuing studies (Gultneh *et al.* 2008; Assey *et al.*, 2010*a*, 2010*b*; Butcher *et al.*, 2009) of nickel(II) complexes with relevance to the nickel containing metalloenzymes, we wish to report the structure of the mixed ligand complex, $C_{38}H_{34}N_4N_1O_4$, where the Ni lies on a center of inversion and contains two 2-benzylaminopyridine (2-BAP) and two salicylaldehyde molecules where the O donors form an equatorial plane with pyridine N's in axial positions, thus the Ni is in an octahedral coordination environment.

The Ni—O and Ni—N bond distances (see Table 1) are within the normal ranges observed in other Ni complexes containing similar ligands (Allen *et al.*, 1987). There are hydrogen bonding interactions between the secondary amine H and phenolic O as well as C—H···O interactions which result in the dihedral angle between the aromatic phenyl ring of the salicylaldehyde moiety and the pyridine ring being 80.23 (4)°. The dihedral angle between the NiO₄ plane and salicylaldehyde plane is 10.31 (5)°. In the packing there are both intermolecular C-H··· π interactions (see Table 1) involving the salicylaldehyde anion which link the molecules into a chain in the b direction. In addition there are offsetting π - π interactions involving both the pyridine and phenyl rings of the 2-BAP moiety (see Figure 3). For the pyridine rings, Cg–Cg distance 4.0100 (8), perpendicular distance 3.3506 (5), slippage 2.203 Symmetry 1-x, 1-y, 1-z; for the phenyl rings (a) Cg-Cg -distance 3.6601 (8), perpendicular distance 3.4408 (5), slippage 1.248 Symmetry -x, 1-y, 2-z; (b) Cg–Cg distance 4.8561 (8), perpendicular distance 3.0743 (5), slippage 3.759 Symmetry 1-x, 1-y, 2-z.

Experimental

Salicylaldehyde (0.23 g, 1.9 mmol) and 0.370 g of 2-benzylaminopyridine (2.0 mmol) were separately dissolved in 20 ml and 30 ml of methanol respectively before mixing and stirring under reflux followed by addition of 0.36 g (1.5 mmol) of NiCl₂.6H₂O in MeOH (20 ml). 2-Benzylaminopyridine, a secondary amine, has shown a chelating ability to nickel salts (nitrate and perchlorate) even in the presence of an aryl aldehyde (Butcher *et al.*, 2009). The solution of the salt and the two ligands was stirred overnight at room temperature. The mixture was evaporated under reduced pressure and a dark-green semi-solid was obtained. A small amount of the complex was then dissolved in 5 ml of DMF, filtered and layered with diethyl ether. Light green X-ray quality crystals were obtained after slow diffusion of the diethyl ether into DMF (yield 68%, m.p. 410 - 412 K). IR Data: 3330 cm⁻¹ v(N—H) benzylamine nitrogen-hydrogen stretching; 3078 cm⁻¹ and 3018 cm⁻¹ v(C—H) aldehyde C—H stretching; 2851 cm⁻¹ and 2770 cm⁻¹ benzyl v(C—H); 1615 cm⁻¹ v(C=O) aldehyde carbonyl stretching; 1533 cm⁻¹ and 1516 cm⁻¹ v(N—C) and v(N—H) bendings respectively; 1471 cm⁻¹, 1445 cm⁻¹ v(Ar C—H) bendings; 757 cm⁻¹ v (out of plane aromatic bend). UV-vis data (in cm⁻¹ with $\varepsilon_{max} [M^{-1}.cm^{-1}]$ in brackets): 32154 (1847), 25510 (1306), 15476 (13), and 9174 (7). Room temperature magnetic moment was 3.01 BM.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances of 0.95 to 0.99 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The positional and thermal parameters for the H atom attached to N were refined. The 0 2 0 reflection (which would have been the strongest reflection) was behind the beamstop and was omitted.

Figures

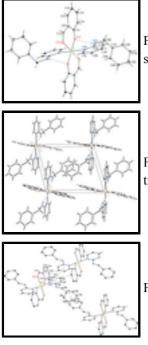


Fig. 1. The molecular structure of the complex, $C_{38}H_{34}N_4NiO_4$, showing the atom numbering scheme and 50% probability displacement ellipsoids.

Fig. 2. The molecular packing for $C_{38}H_{34}N_4NiO_4$, viewed down the *c* axis showing the intramolecular N—H…O interactions as dashed lines.

Fig. 3. Molecular packing for $C_{38}H_{34}N_4NiO_4$ showing π - π and C-H··· π interactions.

Bis[2-(benzylamino)pyridine- κN^1]bis(2-formylphenolato- $\kappa^2 O, O'$)nickel(II)

Crystal data	
[Ni(C ₇ H ₅ O ₂) ₂ (C ₁₂ H ₁₂ N ₂) ₂]	Z = 1
$M_r = 669.40$	F(000) = 350
Triclinic, <i>P</i> T	$D_{\rm x} = 1.424 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 8.1747 (5) Å	Cell parameters from 5541 reflections
<i>b</i> = 9.3365 (5) Å	$\theta = 4.8 - 32.6^{\circ}$
c = 10.9183 (6) Å	$\mu = 0.67 \text{ mm}^{-1}$
$\alpha = 73.926 \ (5)^{\circ}$	T = 110 K
$\beta = 84.766 (5)^{\circ}$	Block, pale green
$\gamma = 77.247 \ (5)^{\circ}$	$0.47\times0.41\times0.35~mm$
V = 780.58 (8) Å ³	

Data collection

Oxford Diffraction Xcalibur diffractometer with a Ruby (Gemini Mo) detector	5136 independent reflections
Radiation source: Enhance (Mo) X-ray Source	4216 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.025$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 32.6^{\circ}, \ \theta_{\text{min}} = 4.8^{\circ}$
ω scans	$h = -12 \rightarrow 9$
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)	$k = -14 \rightarrow 13$
$T_{\min} = 0.932, T_{\max} = 1.000$	$l = -16 \rightarrow 15$
9822 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.086$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0457P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
5136 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
218 parameters	$\Delta \rho_{max} = 0.46 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.27 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni	0.5000	1.0000	0.5000	0.01289 (7)
O1A	0.27528 (11)	1.00213 (9)	0.43885 (9)	0.01507 (18)
O2A	0.61193 (11)	0.98245 (10)	0.32627 (9)	0.01674 (18)
C1A	0.24508 (15)	0.97081 (12)	0.33607 (12)	0.0140 (2)
C2A	0.07923 (16)	0.95941 (13)	0.31617 (13)	0.0172 (2)

H2AA	-0.0068	0.9765	0.3782	0.021*
C3A	0.04021 (17)	0.92416 (14)	0.20916 (14)	0.0213 (3)
H3AA	-0.0721	0.9184	0.1990	0.026*
C4A	0.16279 (18)	0.89655 (14)	0.11473 (14)	0.0221 (3)
H4AA	0.1346	0.8713	0.0419	0.026*
C5A	0.32436 (17)	0.90699 (14)	0.13020 (13)	0.0190 (3)
H5AA	0.4081	0.8885	0.0670	0.023*
C6A	0.36945 (16)	0.94477 (13)	0.23829 (12)	0.0150 (2)
C7A	0.54127 (16)	0.95393 (13)	0.24225 (12)	0.0172 (2)
H7A	0.6106	0.9358	0.1712	0.021*
N1B	0.55584 (13)	0.75527 (11)	0.56185 (10)	0.0146 (2)
N2B	0.28723 (13)	0.72549 (12)	0.63564 (11)	0.0173 (2)
H2BN	0.262 (2)	0.8111 (19)	0.6004 (18)	0.026 (4)*
C1B	0.71914 (16)	0.69158 (14)	0.54563 (13)	0.0166 (2)
H1BA	0.7937	0.7570	0.5059	0.020*
C2B	0.78339 (16)	0.53754 (14)	0.58336 (13)	0.0168 (2)
H2BA	0.8998	0.4981	0.5729	0.020*
C3B	0.67321 (16)	0.44103 (13)	0.63735 (12)	0.0165 (2)
H3BA	0.7134	0.3339	0.6621	0.020*
C4B	0.50697 (16)	0.50075 (13)	0.65462 (12)	0.0150 (2)
H4BA	0.4310	0.4356	0.6915	0.018*
C5B	0.44918 (15)	0.66092 (13)	0.61691 (12)	0.0139 (2)
C6B	0.16081 (15)	0.63865 (14)	0.69494 (13)	0.0172 (2)
H6BA	0.1547	0.5660	0.6453	0.021*
H6BB	0.0503	0.7091	0.6912	0.021*
C7B	0.19397 (15)	0.55083 (14)	0.83287 (13)	0.0167 (2)
C8B	0.26795 (17)	0.60818 (16)	0.91340 (14)	0.0221 (3)
H8BA	0.2980	0.7048	0.8822	0.027*
C9B	0.29842 (19)	0.52611 (18)	1.03870 (15)	0.0295 (3)
H9BA	0.3482	0.5672	1.0929	0.035*
C10B	0.25672 (19)	0.38432 (18)	1.08552 (15)	0.0313 (3)
H10A	0.2794	0.3275	1.1711	0.038*
C11B	0.1819 (2)	0.32658 (16)	1.00657 (16)	0.0294 (3)
H11A	0.1515	0.2302	1.0383	0.035*
C12B	0.15109 (17)	0.40869 (15)	0.88107 (14)	0.0222 (3)
H12A	0.1002	0.3677	0.8274	0.027*

Atomic displacement parameters (\AA^2)

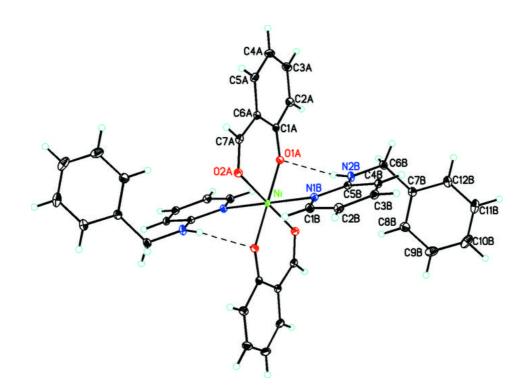
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni	0.01303 (11)	0.01272 (11)	0.01305 (12)	-0.00388 (8)	-0.00051 (8)	-0.00262 (8)
O1A	0.0149 (4)	0.0147 (4)	0.0160 (4)	-0.0035 (3)	-0.0011 (3)	-0.0040 (3)
O2A	0.0159 (4)	0.0184 (4)	0.0162 (5)	-0.0050 (3)	-0.0002 (3)	-0.0040 (3)
C1A	0.0162 (6)	0.0083 (5)	0.0158 (6)	-0.0020 (4)	-0.0039 (5)	0.0001 (4)
C2A	0.0148 (6)	0.0146 (5)	0.0212 (6)	-0.0012 (5)	-0.0035 (5)	-0.0036 (5)
C3A	0.0193 (6)	0.0186 (6)	0.0268 (7)	-0.0031 (5)	-0.0088 (5)	-0.0055 (5)
C4A	0.0286 (7)	0.0193 (6)	0.0191 (7)	-0.0036 (5)	-0.0097 (6)	-0.0043 (5)
C5A	0.0246 (7)	0.0174 (5)	0.0139 (6)	-0.0046 (5)	-0.0023 (5)	-0.0017 (5)

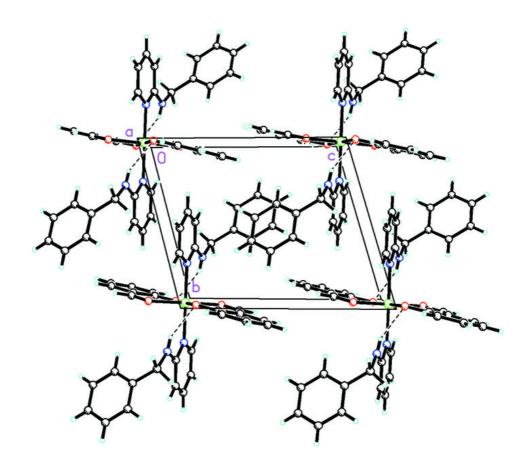
C6A	0.0177 (6)	0.0123 (5)	0.0144 (6)	-0.0040 (5)	-0.0018 (5)	-0.0011 (4)
C7A	0.0193 (6)	0.0172 (5)	0.0137 (6)	-0.0048 (5)	0.0009 (5)	-0.0012 (5)
N1B	0.0143 (5)	0.0147 (4)	0.0150 (5)	-0.0045 (4)	0.0000 (4)	-0.0032 (4)
N2B	0.0144 (5)	0.0126 (5)	0.0219 (6)	-0.0035 (4)	0.0008 (4)	0.0005 (4)
C1B	0.0155 (6)	0.0175 (5)	0.0179 (6)	-0.0059 (5)	0.0017 (5)	-0.0050 (5)
C2B	0.0139 (6)	0.0184 (5)	0.0174 (6)	-0.0010 (5)	0.0014 (5)	-0.0060 (5)
C3B	0.0207 (6)	0.0136 (5)	0.0143 (6)	-0.0016 (5)	-0.0009 (5)	-0.0036 (4)
C4B	0.0177 (6)	0.0128 (5)	0.0140 (6)	-0.0047 (5)	0.0002 (5)	-0.0016 (4)
C5B	0.0148 (5)	0.0146 (5)	0.0127 (6)	-0.0042 (4)	-0.0009 (4)	-0.0032 (4)
C6B	0.0141 (6)	0.0182 (5)	0.0197 (6)	-0.0066 (5)	0.0000 (5)	-0.0032 (5)
C7B	0.0132 (5)	0.0170 (5)	0.0188 (6)	-0.0024 (5)	0.0024 (5)	-0.0043 (5)
C8B	0.0208 (6)	0.0264 (6)	0.0209 (7)	-0.0069 (5)	0.0020 (5)	-0.0086 (5)
C9B	0.0260 (7)	0.0431 (8)	0.0207 (7)	-0.0039 (7)	-0.0005 (6)	-0.0129 (7)
C10B	0.0258 (7)	0.0380 (8)	0.0187 (7)	0.0049 (6)	0.0035 (6)	0.0006 (6)
C11B	0.0301 (8)	0.0211 (6)	0.0287 (8)	-0.0029 (6)	0.0079 (7)	0.0023 (6)
C12B	0.0216 (6)	0.0186 (6)	0.0253 (7)	-0.0058 (5)	0.0031 (6)	-0.0040 (5)

Geometric parameters (Å, °)

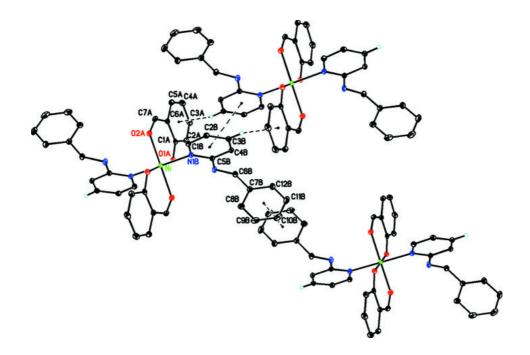
Ni—O1A	2.0052 (9)	N2B—H2BN	0.775 (17)
Ni—O1A ⁱ	2.0052 (9)	C1B—C2B	1.3755 (17)
Ni—O2A	2.0618 (9)	C1B—H1BA	0.9500
Ni—O2A ⁱ	2.0618 (9)	C2B—C3B	1.3920 (17)
Ni—N1B ⁱ	2.1509 (10)	C2B—H2BA	0.9500
Ni—N1B	2.1509 (10)	C3B—C4B	1.3676 (18)
O1A—C1A	1.2923 (15)	СЗВ—НЗВА	0.9500
O2A—C7A	1.2434 (15)	C4B—C5B	1.4184 (16)
C1A—C2A	1.4237 (17)	C4B—H4BA	0.9500
C1A—C6A	1.4384 (18)	C6B—C7B	1.5187 (19)
C2A—C3A	1.3793 (18)	C6B—H6BA	0.9900
C2A—H2AA	0.9500	C6B—H6BB	0.9900
C3A—C4A	1.406 (2)	C7B—C8B	1.3878 (18)
СЗА—НЗАА	0.9500	C7B—C12B	1.3950 (17)
C4A—C5A	1.3745 (19)	C8B—C9B	1.385 (2)
C4A—H4AA	0.9500	C8B—H8BA	0.9500
C5A—C6A	1.4214 (17)	C9B—C10B	1.387 (2)
C5A—H5AA	0.9500	С9В—Н9ВА	0.9500
C6A—C7A	1.4311 (18)	C10B—C11B	1.381 (2)
С7А—Н7А	0.9500	C10B—H10A	0.9500
N1B—C1B	1.3534 (16)	C11B—C12B	1.387 (2)
N1B—C5B	1.3594 (15)	C11B—H11A	0.9500
N2B—C5B	1.3507 (16)	C12B—H12A	0.9500
N2B—C6B	1.4497 (15)		
O1A—Ni—O1A ⁱ	180.000 (1)	C5B—N2B—H2BN	114.7 (13)
O1A—Ni—O2A	90.90 (4)	C6B—N2B—H2BN	120.9 (13)
O1A ⁱ —Ni—O2A	89.10 (4)	N1B—C1B—C2B	123.78 (11)
O1A—Ni—O2A ⁱ	89.10 (4)	N1B—C1B—H1BA	118.1

O1A ⁱ —Ni—O2A ⁱ	90.90 (4)	C2B—C1B—H1BA	118.1
O2A—Ni—O2A ⁱ	180.000 (1)	C1B—C2B—C3B	118.18 (11)
O1A—Ni—N1B ⁱ	88.39 (4)	C1B—C2B—H2BA	120.9
O1A ⁱ —Ni—N1B ⁱ	91.61 (4)	C3B—C2B—H2BA	120.9
O2A—Ni—N1B ⁱ	92.32 (4)	C4B—C3B—C2B	119.85 (11)
O2A ⁱ —Ni—N1B ⁱ	87.68 (4)	С4В—С3В—Н3ВА	120.1
01A—Ni—N1B	91.61 (4)	C2B—C3B—H3BA	120.1
01A ⁱ —Ni—N1B	88.39 (4)	C3B—C4B—C5B	119.29 (11)
OIA—NI—NIB O2A—Ni—NIB	87.68 (4)	C3B—C4B—H4BA	120.4
O2A ⁱ —Ni—N1B	92.32 (4)	С5В—С4В—Н4ВА	120.4
N1B ⁱ —Ni—N1B	180.00 (6)	N2B—C5B—N1B	117.55 (10)
C1A—O1A—Ni	127.16 (8)	N2B—C5B—C4B	121.45 (11)
C7A—O2A—Ni	123.83 (8)	N1B—C5B—C4B	120.99 (11)
01A—C1A—C2A 01A—C1A—C6A	119.19 (11)	N2B—C6B—C7B	113.76 (10)
C2A—C1A—C6A	124.31 (11) 116.50 (11)	N2B—C6B—H6BA C7B—C6B—H6BA	108.8 108.8
C2A—C1A—C0A C3A—C2A—C1A	121.71 (12)	N2B—C6B—H6BB	108.8
C3A—C2A—H2AA	121.71 (12)	C7B—C6B—H6BB	108.8
C1A—C2A—H2AA	119.1	H6BA—C6B—H6BB	107.7
C2A—C3A—C4A	121.58 (12)	C8B—C7B—C12B	118.46 (13)
C2A—C3A—H3AA	119.2	C8B—C7B—C6B	121.46 (11)
С4А—С3А—НЗАА	119.2	C12B—C7B—C6B	120.08 (12)
C5A—C4A—C3A	118.48 (12)	C9B—C8B—C7B	120.72 (13)
С5А—С4А—Н4АА	120.8	C9B—C8B—H8BA	119.6
СЗА—С4А—Н4АА	120.8	C7B—C8B—H8BA	119.6
C4A—C5A—C6A	121.73 (12)	C8B—C9B—C10B	120.44 (14)
С4А—С5А—Н5АА	119.1	C8B—C9B—H9BA	119.8
С6А—С5А—Н5АА	119.1	C10B—C9B—H9BA	119.8
С5А—С6А—С7А	116.26 (12)	C11B—C10B—C9B	119.35 (15)
C5A—C6A—C1A	119.98 (11)	C11B—C10B—H10A	120.3
C7A—C6A—C1A	123.76 (12)	C9B—C10B—H10A	120.3
O2A—C7A—C6A	128.67 (12)	C10B—C11B—C12B	120.30 (13)
O2A—C7A—H7A	115.7	C10B—C11B—H11A	119.9
C6A—C7A—H7A	115.7	C12B—C11B—H11A	119.9
C1B—N1B—C5B	117.88 (10)	C11B—C12B—C7B	120.72 (13)
C1B—N1B—Ni	114.15 (8)	C11B—C12B—H12A	119.6
C5B—N1B—Ni	127.95 (8)	C7B—C12B—H12A	119.6
C5B—N2B—C6B	123.33 (10)		
O2A—Ni—O1A—C1A	11.63 (9)	O1A—Ni—N1B—C5B	-37.62 (10)
O2A ⁱ —Ni—O1A—C1A	-168.37 (9)	O1A ⁱ —Ni—N1B—C5B	142.38 (10)
N1B ⁱ —Ni—O1A—C1A	103.93 (9)	O2A—Ni—N1B—C5B	-128.46 (10)
N1B—Ni—O1A—C1A	-76.07 (9)	O2A ⁱ —Ni—N1B—C5B	51.54 (10)
O1A—Ni—O2A—C7A	-11.59 (10)	C5B—N1B—C1B—C2B	-1.03 (19)
O1A ⁱ —Ni—O2A—C7A	168.41 (10)	Ni—N1B—C1B—C2B	177.25 (10)
N1B ⁱ —Ni—O2A—C7A	-100.02 (10)	N1B—C1B—C2B—C3B	2.3 (2)
N1B—Ni—O2A—C7A	79.98 (10)	C1B—C2B—C3B—C4B	-1.76 (19)


Ni—O1A—C1A—C2A	172.05 (8)	C2B—C3B—C4B—C5B	0.07 (19)		
Ni—O1A—C1A—C6A	-7.43 (16)	C6B—N2B—C5B—N1B	-179.07 (11)		
O1A—C1A—C2A—C3A	-179.07 (11)	C6B—N2B—C5B—C4B	0.13 (19)		
C6A—C1A—C2A—C3A	0.45 (18)	C1B—N1B—C5B—N2B	178.42 (12)		
C1A—C2A—C3A—C4A	0.5 (2)	Ni—N1B—C5B—N2B	0.40 (16)		
C2A—C3A—C4A—C5A	-0.71 (19)	C1B—N1B—C5B—C4B	-0.78 (17)		
C3A—C4A—C5A—C6A	-0.05 (19)	Ni—N1B—C5B—C4B	-178.80 (9)		
C4A—C5A—C6A—C7A	-179.21 (12)	C3B—C4B—C5B—N2B	-177.92 (12)		
C4A—C5A—C6A—C1A	1.01 (19)	C3B—C4B—C5B—N1B	1.25 (18)		
O1A-C1A-C6A-C5A	178.32 (10)	C5B—N2B—C6B—C7B	63.67 (16)		
C2A—C1A—C6A—C5A	-1.18 (17)	N2B—C6B—C7B—C8B	34.66 (16)		
O1A—C1A—C6A—C7A	-1.45 (19)	N2B—C6B—C7B—C12B	-144.86 (12)		
C2A—C1A—C6A—C7A	179.06 (11)	C12B—C7B—C8B—C9B	0.0 (2)		
Ni—O2A—C7A—C6A	7.87 (18)	C6B—C7B—C8B—C9B	-179.53 (12)		
C5A—C6A—C7A—O2A	-178.85 (12)	C7B—C8B—C9B—C10B	0.6 (2)		
C1A—C6A—C7A—O2A	0.9 (2)	C8B-C9B-C10B-C11B	-1.0 (2)		
O1A—Ni—N1B—C1B	144.30 (9)	C9B-C10B-C11B-C12B	0.9 (2)		
O1A ⁱ —Ni—N1B—C1B	-35.70 (9)	C10B—C11B—C12B—C7B	-0.4 (2)		
O2A—Ni—N1B—C1B	53.46 (9)	C8B-C7B-C12B-C11B	-0.1 (2)		
O2A ⁱ —Ni—N1B—C1B	-126.54 (9)	C6B—C7B—C12B—C11B	179.45 (12)		
Symmetry codes: (i) $-x+1, -y+2, -z+1$.					


Hydrogen-bond geometry (Å, °)

Cg4 is the centroid of the C1A–C6A ring.				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2B—H2BN…O1A	0.775 (17)	2.147 (18)	2.8550 (14)	152.0 (17)
C1B—H1BA···O1A ⁱ	0.95	2.42	2.9216 (14)	113
C3B—H3BA…Cg4 ⁱⁱ	0.95	2.44	3.3674 (14)	166
C11B—H11A…Cg4 ⁱⁱⁱ	0.95	2.91	3.7535 (17)	148
$(1, \dots, (1, \dots, $	1 1 (11)	1 1		


Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+1; (ii) -*x*+1, -*y*+1, -*z*+1; (iii) *x*, *y*-1, *z*+1.

